skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Madurasinghe, Dulip Tharaka"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A comprehensive understanding of the topology of the electric power transmission network (EPTN) is essential for reliable and robust control of power systems. While existing research primarily relies on domain-specific methods, it lacks data-driven approaches that have proven effective in modeling the topology of complex systems. To address this gap, this paper explores the potential of data-driven methods for more accurate and adaptive solutions to uncover the true underlying topology of EPTNs. First, this paper examines Gaussian Graphical Models (GGM) to create an EPTN network graph (i.e., undirected simple graph). Second, to further refine and validate this estimated network graph, a physics-based, domain specific refinement algorithm is proposed to prune false edges and construct the corresponding electric power flow network graph (i.e., directed multi-graph). The proposed method is tested using a synchrophasor dataset collected from a two-area, four-machine power system simulated on the real-time digital simulator (RTDS) platform. Experimental results show both the network and flow graphs can be reconstructed using various operating conditions and topologies with limited failure cases. 
    more » « less
    Free, publicly-accessible full text available December 18, 2025